JAB6651 Ein-/Ausgangs-Modul Bedienungs- und Montageanleitung

Ausgabe 1.4.4 15. Okt. 2020

Allgemeines

Das Modul **JAB6651** gehört zur Metasys® Network Control Engine-Familie. Durch seinen Einsatz können FEC-, FAC- und NCE-Regler um zusätzliche digitale und analoge Ein- und Ausgangsdatenpunkte erweitert werden (2 DI, 2 DO, 4 AI und 4 AO).

Das auf eine Hutschiene zu montierende Modul **JAB6651** stellt die Anschlüsse für die Hardware-I/O-Datenpunkte zur Verfügung (als steckbare Federzug-Klemmen ausgeführt) sowie Status-LEDs, die Auskunft über den Betriebszustand des Moduls selbst geben. Die Module kommunizieren mit dem Regler über die SA- (Sensor-/Actuator) Schnittstelle des Reglers.

Die Konfiguration des Moduls wird durch den übergeordneten FEC-, FAC- oder NCE-Regler in das Gerät geladen. Zur Inbetriebnahme und zum Konfigurieren ist das CCT-Tool erforderlich.

Artikelnummern und -Bezeichnungen

Artikel-Nr.	Bezeichnung	Beschreibung
00002893	JAB6651	Ein-/Ausgangsmodul für Montage auf Hutschiene

Mitgelieferte Teile

- ein JAB6651 Ein-/Ausgangs-Modul mit abziehbaren Klemmen
- eine Bedienungs- und Montageanleitung

Vor der Montage

Beachten Sie bitte diese Regeln beim Einbau der JAB6651 Module:

- Transportieren Sie die Module nur in der Originalverpackung, um äußere Einwirkungen auf die Geräte zu minimieren.
- Lassen Sie die Geräte nicht fallen und setzen Sie sie nicht mechanischen Stößen und Vibrationen aus.
- Vergewissern Sie sich, dass sich alle nachfolgenden Teile in der Verpackung befinden.

Montage

Befolgen Sie diese Richtlinien bei der Montage der JAB6651 Module:

- Setzen Sie die Module nur in Umgebungen ein, die frei von korrosiven Gasen sind und beachten Sie die im Abschnitt Technische Daten angegebenen Umgebungsbedingungen.
- Montieren Sie die Module nicht auf Vibrationen ausgesetzten Flächen.
- Vermeiden Sie die Montage in Bereichen starker elektromagnetischer Emissionen.
- Achten Sie bei der Montage darauf, dass keine anderen Teile oder Geräte die Luftzirkulation behindern oder aufgeheizte Luft in das Gehäuse blasen.

Benötigtes Montagematerial und Werkzeuge

- ein mindestens 4,5 cm langes Stück DIN Hutschiene und dafür passendes Befestigungsmaterial
- einen kleinen geraden Schraubendreher zur Betätigung der Federzug- und Schraubklemmen
- einen großen geraden Schraubendreher mit breiter Klinge zum Lösen des Gerätes von der Hutschiene

Montage auf der Hutschiene

So befestigen Sie die JAB6651-Module auf einer DIN-Schiene:

- 1. Montieren Sie ein mindestens 4,5 cm langes Stück DIN-Schiene waagrecht und vertikal mittig am gewünschten Ort. Lassen Sie genügend Platz für die anzuschließenden Kabel und Leitungen (min. 5 cm über und unterhalb des Moduls, d.h. die erforderliche Gesamthöhe beträgt ca. 20 cm).
- 2. Hängen Sie das JAB6651 an der gewünschten Position mit dem Haken von oben auf die DIN-Schiene und drücken Sie es sanft nach unten und gegen die Montageplatte.
- 3. Der untere Befestigungsclip muss an der DIN-Schiene einrasten, um das Modul sicher an seiner Stelle zu fixieren.
- 4. Um das JAB6651 Modul wieder von der Hutschiene abzunehmen, ziehen Sie den unteren Befestigungsclip mit einem großen Schraubendreher mit breiter Klinge vorsichtig nach unten und heben das Modul von der DIN-Schiene.

Verdrahtung

Bitte beachten Sie alle von Johnson Controls dokumentierten Vorgaben und Hinweise über den Anschluss und den Betrieb von Geräten am MS/TP-Bus, z.B. *MS/TP Communications Bus Overview Technical Bulletin (LIT-12011034)*.

So schließen Sie ein JAB6651-Modul an:

- 1. Stellen Sie die Geräte-(Bus-)Adresse mit Hilfe der DIP-Schalter auf der Seite des Moduls ein. Beachten Sie hierbei auch die für das Metasys®-System allgemeinen Richtlinien für den SA-Bus. Der zulässige Adress-Bereich liegt immer zwischen 128 und 254. Siehe auch Erforderliche Hardware-Einstellungen.
- 2. Verdrahten Sie das Gerät gemäß dem Anschlussplan (siehe Abb. 1).
- 3. Schließen Sie evtl. weitere Geräte an den SA-Bus an. Schalten Sie dabei alle Geräte am SA-Bus in eine Reihe und vermeiden Sie Verzweigungen. Diese könnten Reflexionen verursachen und den zuverlässigen Betrieb beeinträchtigen.
 - **Anmerkung:** Falls mehrere Geräte am SA-Bus betrieben werden und sich das JAB6651 am Ende des Busses befindet, sollten Sie den End-of-Line-Schalter setzen, um den Bus zu terminieren (siehe auch Abb. 3).
- 4. Schalten Sie die Versorgungsspannung für das JAB6651 ein. Sobald das NCE das Modul auf dem SA-Bus erkannt hat, wird die Konfiguration in das Modul geladen, sofern das NCE bereits mit Hilfe des CCT-Tools in Betrieb genommen wurde.

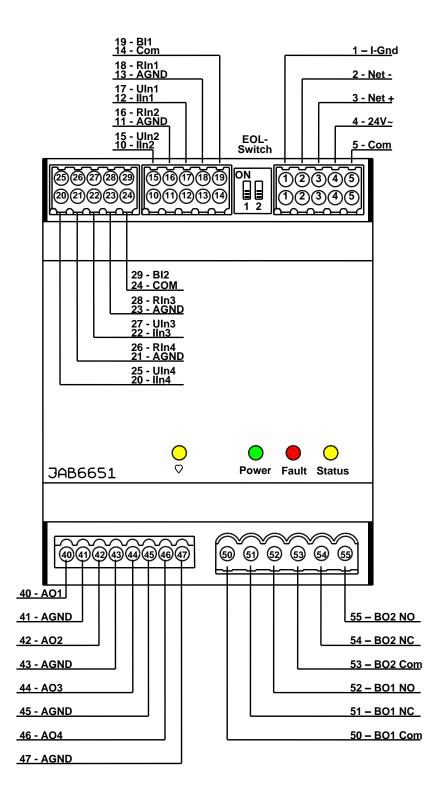


Abb. 1: Anschlussplan des Moduls JAB6651

Beachten Sie: Die SHLD-Klemme (Shld.: Shield = Schirm) am SA-Bus stellt weder eine elektrisch geerdete Masse-Verbindung dar, noch stellt sie eine Spannungsversorgung für andere am SA-Bus befindlichen Geräte zur Verfügung. Sie ist lediglich vorgesehen, um den Schirm des von Gerät zu Gerät durchzuschleifenden Buskabels aufzulegen.

Tabelle 1: Verdrahtungs-Richtlinien für Romutec I/O-Module (Teil 1 von 2):

Klemmen- Block	Name im Plan	Funktion und elektrische Daten/Anforderungen	Anschluss- Anforderungen
Analog IN (Klemmen 10 - 13,	Uln n	Analog-Eingang, Betriebsart "Spannungs-Messung" Eingangsspannung 0-10 V, interner 75 kΩ Pull-down- Widerstand	А
15 - 18, 20 - 23 &	IIn n	Analog-Eingang, Betriebsart "Strom-Messung" Eingangsstrom 0-20 mA, interne 100 Ω Last-Impedanz	В
25 - 28)	RIn n	Analog-Eingang, Betriebsart "Widerstands-Messung" Eingangswiderstand 0-600 k Ω , intern 12 V, 15 k Ω Pull-up RTD 1k Nickel [L & G], 1k Nickel [DIN], 1k Platinum, A99B Silicon Temperature Sensor	A
	AGND	Bezugspotential für alle analogen Eingänge, intern verbunden mit den Com's von DI, AO und Spannungsversorgung	wie Al
Digital IN (Klemmen 14/19 &	BI n	Digitaler Eingang für potentialfreien Kontakt 0.01 s minimale Impulsbreite (eine Halbwelle bei 50 Hz) Intern 35 V, 2.7kΩ Pull-up	А
24/29)	BI Com	Signal für die Ansteuerung aller digitalen Eingänge, intern verbunden mit dem Com der Spannungsversorgung	
Analog OUT (Klemmen 40 - 47)	AO n	Analog-Ausgang, Ausgangsspannung 0-10 VDC Extern erforderliche Bürde mindestens 1k Ohm Maximaler Ausgangsstrom 10 mA	A
	AGND	Bezugspotential für die Ausgangsspannung aller analogen Ausgänge, intern verbunden mit dem Com der Spannungsversorgung	
Digital OUT (Klemmen 50 – 55)	BO n NO	Digitaler Relais-Ausgang (Schließer), max. 250 VAC Nenndaten für ohmsche Last: anfänglicher Kontaktwiderstand 100mΩ (bei 1A / 24 VDC) Nennlast 5 A bei 250 VAC, 5 A bei 30 VDC, 10 A bei 125 VAC Max. Schaltspannung 277 VAC, 30 VDC Max. Schaltleistung 1250 VA (AC), 150 W (DC) Lebensdauer 1x10 ⁵ (bei Nennlast), 1x10 ⁷ (ohne Last)	0.5-1.5 mm² (20-16 AWG) Litzendraht
	BO n NC	Digitaler Relais-Ausgang (Öffner), max. 250 VAC Nenndaten für ohmsche Last: anfänglicher Kontaktwiderstand 100mΩ (at 1A / 24 VDC) Nennlast 3 A bei 250 VAC, 3 A bei 30 VDC, 5 A bei 125 VAC Max. Schaltspannung 277 VAC, 30 VDC Max. Schaltleistung 750 VA (AC), 90 W (DC) Lebensdauer 1x10 ⁵ (bei Nennlast), 1x10 ⁷ (ohne Last) Ausgangssignal der Digitalen Ausgänge; isoliert von allen	
	BO II Colli	anderen Com-Anschlüssen, inkl. anderer DO-Com-Klemmen	

Tabelle 2: Verdrahtungs-Richtlinien für Romutec I/O-Module (Teil 2 von 2):

Klemmenblock / Anwendung	Name im Plan	Funktion und elektrische Daten/Anforderungen	Anschluss- Anforderungen
SA Bus¹ (Klemmen 1 - 3)	Net + Net – I-Gnd	Anschlüsse für SA Bus-Kommunikation	in Reihe verdrahtet, max. Länge 366 m
ŕ	Shield	Klemme für den Schirm des SA-Bus-Kabels	0.5 bis 1.5 mm ² [0.75 mm ² empfohlen]
24~ Power	24~ VAC	Versorgungsspannung 24 VAC ± 10%	0.75 mm bis 1.5 mm ²
(Klemmen 4 & 5)	Com	Masse der 24~ Versorgungsspannung; intern mit dem Com der DI-Klemmen verbunden	[1.0 mm ² empfohlen]

¹⁾ Die SA-Bus-Spezifikationen in dieser Tabelle gelten für eine MS/TP-Bus-Kommunikation bei 38.400 Baud. Weitergehende Informationen erhalten Sie in *MS/TP Communications Bus Technical Bulletin (LIT-12011034)*, das bei Johnson Controls erhältlich ist.

Tabelle 3: Richtlinien für Leitungsquerschnitte und -Längen

Richtlinie	Kabelquerschnitt	Maximale Länge	Annahmen
Α	1.5 mm ² (16 AWG)	457.2 m (1,500 ft)	maximaler Spannungsabfall 100 mV
	1.0 mm ² (17 AWG)	304.8 m (1000 ft)	
	0.75 mm ² (18 AWG)	228.6 m (750 ft)	
	0.5 mm ² (20 AWG)	152.4 m (500 ft)	
В	1.5 mm ² (16 AWG)	228.6 m (750 ft)	maximaler Spannungsabfall 100 mV
	1.0 mm ² (17 AWG)	152.4 m (500 ft)	
	0.75 mm ² (18 AWG)	114.2 m (375 ft)	
	0.5 mm ² (20 AWG)	76.2 m (250 ft)	

Erforderliche Hardware-Einstellungen

Einstellen der SA-Bus-Adresse

Mit dem 8-fach Dipschalter wird an jedem Modul eine auf dem SA-Bus nur einmalig vorkommende Adresse eingestellt. Die voreingestellte Adresse 255 ist auf jeden Fall zu ändern.

Stellen Sie für die JDB- und JAB-Module sowie alle anderen am Bus angeschlossenen Slave-Geräte aufeinanderfolgende Adressen ein, beginnend mit 128 bis 254.

Der Dipschalter zum Einstellen der Adresse befindet sich seitlich am JAB6651. Die Adresse wird binärcodiert dargestellt und errechnet sich als Summe der auf ON gestellten Wertigkeiten. Beispiel: Wenn der zweite (2), der fünfte (16) und der achte (128) DIP-Schalter auf ON stehen, dann ist die Bus-Adresse des Gerätes 146 (2 + 16 + 128 = 146). Siehe Abb. 2.

Tabelle 4: FC-/SA-Bus Adress-Übersicht

Adresse	Beschreibung
0	Reserviert für übergeordneten Regler
1-3	Reserviert (z.B. für lokales Display des NCE = 3)
4-127	Unzulässige Adressen für Romutec I/O Module – Reserviert für Field Equipment Controller (FEC) und Metasys®-IOM-Module (als Master devices).
128-254	Gültiger Adress-Bereich für Romutec I/O-Module (als Slave-Geräte)
255	Voreingestellte Adresse - muss geändert werden

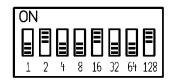


Abb. 2: Einstellen der Bus-Adresse

Setzen der SA Bus-Terminierung

Falls mehrere Geräte am SA-Bus betrieben werden und sich das JAB6651 **am Ende des Busses** befindet, sollten Sie den Bus durch das Setzen des End-of-Line-(EOL-)Schalters terminieren. Dabei werden Abschlusswiderstände auf den Bus geschaltet, die Reflexionen am Leitungsende verhindern. Die ab Werk voreingestellte Position ist OFF (nicht terminiert), wie in Abb. 3 dargestellt. Falls Sie das JAB6651 Modul terminieren, dann bringen Sie **beide** EOL-Schalter in die ON-Position.

Wichtig: Entweder beide Schalter 1 + 2 befinden sich in der ON-Position oder keiner. Siehe Abb. 3.

Tabelle 5: Werte-Übersicht für die Terminierung

Wert	Beschreibung	
0	nicht terminiert	
1	ungültige Einstellung	
2	ungültige Einstellung	
3	terminiert	

Abb. 3: Einstellen der Bus-Terminierung

Konfigurieren der Analog-Eingänge

Die Aktivierung bzw. Deaktivierung von internen Lastwiderständen für die jeweilige Betriebsart der Analog-Eingänge (Strom-, Spannungs- oder Widerstandsmessung) erfolgt automatisch beim Laden der Konfigurationsdaten durch den übergeordneten FEC, FAC oder NCE in das JAB6651. Es sind keine weiteren Einstellungen von Hand am JAB6651vorzunehmen.

Anmerkung: Als Default-Konfiguration ist für alle Analog-Eingänge "Spannungsmessung 0...10 VDC" eingestellt.

Wichtig: Sollen ein oder mehrere Analogeingänge für Widerstandsfühler konfiguriert werden, ist folgende Regelung einzuhalten:

Die vier Analogeingänge sind in Gruppen zu je zwei Al zusammengefasst (Al 1 + 2 sowie Al 3 + 4). Ein Widerstandsfühler ist zuerst an Al 2 oder Al 4 vorzusehen, der andere Eingang der Gruppe kann dann beliebig konfiguriert werden, also sowohl als Eingang für einen Widerstandsfühler wie auch für einen aktiven Fühler zur Strom- oder Spannungsmessung.

Bei Verwendung von Widerstandsfühlern vom Typ RT Platinum 1K RTD, RT Nickel 1K RTD oder RT Silicon A99B ist es wichtig, im CCT den Parameter 'Hardware Setup → Input Range High' auf 100.0 Ohm zu setzen (siehe Abb. 4). Alle anderen Default-Werte können üblicherweise übernommen werden.

Hinweis: Der Fühler 'RT 10K NTC Type L Thermistor' wird von den Romutec-Modulen JAB6651 **nicht** unterstützt.

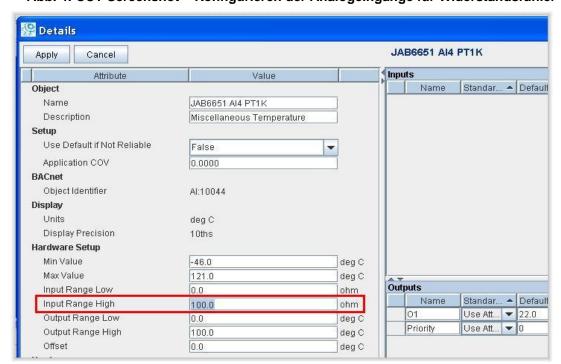


Abb. 4: CCT Screenshot - Konfigurieren der Analogeingänge für Widerstandsfühler

Konfigurieren und Inbetriebnahme

Die Parameter für das Konfigurieren des JAB6651 werden im CCT-Tool festgelegt und im *.caf-Projektfile (Controller Application File) mit abgespeichert. Die Daten dieses Files werden in den FEC, FAC oder NCE geladen. Sobald ein FEC, FAC oder NCE am SA-Bus das JAB6651 mit der passenden Adresse erkannt hat, schreibt es die Konfigurationswerte in das JDB-Modul.

Beim Hinzufügen eines JxBxx51 Gerätes zum SA Bus ist es erforderlich, im CCT jeweils den korrespondierenden JxBxx10 Modultyp von der SA Bus Device-Liste auszuwählen, siehe Tabelle 6.

Tabelle 6: CCT Referenz-Liste

Modul-Typ	Beschreibung	CCT Referenz	CCT Beschreibung
JDB8451	8BI, 4BO mit integrierter Handbedienebene	JDB8410	I/O MODULE 8BI w LEDs, 4 Relay w HOA
JDB6451	6BI, 4BO mit integrierter Handbedienebene (2 x 2- stufige Antriebe)	JDB6410	I/O MODULE 6BI w LEDs, 2 Relay Pairs w HOA
JDB8051	8BI mit integrierter Status- Anzeige LEDs rot/grün	JDB8010	I/O MODULE 8BI w LEDs
JDB1651	16BI mit integrierter Status- Anzeige LEDs rot/grün	JDB1610	I/O MODULE 16BI w LEDs
JAB0451	4AO mit integrierter Handbedienebene	JAB0410	I/O MODULE 4AO w Manual Override
JAB6651	2BI, 2BO, 4AI, 4AO	JAB6610	I/O MODULE 4AI,2BI,4AO,2RO

Weitergehende Informationen zur Verwendung des CCT-Konfigurationstools finden Sie direkt im CCT unter *Help*.

Fehleranalyse

Verwenden Sie die Tabelle 7 um mögliche Fehlerursachen des Moduls JAB6651 einzugrenzen und zu beheben.

Tabelle 7: Status LEDs am JAB6651

Name	Farbe	Normal	Beschreibung
Power	Grün	Ein	Aus = Spannungsversorgung 24V AC fehlt Ein = Spannungsversorgung 24V AC ist vorhanden
Fault	Rot	Aus	Blinkend, 2 Hz = Download oder Startup läuft, nicht betriebsbereit Aus = Kein Fehler Ein = Fehler JAB6651 bzw. Modul in Bootloader-Modus
Status	Gelb	Flicker	Flicker = Daten-Übertragung (Senden, normale Kommunikation) Aus = Keine Daten-Übertragung oder laufende Auto-Baud-Suche
♥ LED	Orange	<u>Ein</u>	Ein = Interner System-Check ok Aus = Neustart oder Austausch des Gerätes erforderlich

Technische Daten

Allgemeines

Betriebsbedingungen	0 bis 50°C (32 bis 122°F); 10 bis 90% rel. Luftfeuchte, nicht-kondensierend
Lagerbedingungen	0 bis 70°C (32 bis 158°F); 10 bis 90% rel. Luftfeuchte, nicht-kondensierend
Angewandte Normen	CE Directive 2014/30/EU CE Directive 2014/35/EU

JAB6651 Ein-/Ausgangs-Modul

Produkt-Bezeichnung	JAB6651 Ein-/Ausgangs-Modul
Versorgungsspannung	24 VAC ± 10% bei 50 oder 60 Hz
Leistungsaufnahme	maximal 12 VA
Anschlüsse	Federzug-Klemmen für I/Os, Spannungsversorgung und MS/TP-Bus
Adressierung	Einstellung mittels DIP-Schalter (128-254). Adressen 0-127 und 255 sind reserviert
Bus-Protokoll	BACnet® MS/TP; 4-Leitungs-SA Bus1) (nur 3 Leitungen genutzt)
Befestigung	35 mm DIN-Schiene
Abmessungen (H x B x T)	92 x 72 x 70 mm (3.6 x 2.8 x 2.8 in.) Minimaler Platzbedarf zur Montage: 120 x 72 x 70 mm (4.7 x 2.8 x 2.8 in.)
Gehäuse	Kunststoffgehäuse, Material: PC-GF10 Schutzart: IP20 (IEC529)
Gewicht	JAB6651: 0.19 kg (0.42 lb)

¹⁾ Weitergehende Information zum SA-Bus sind im Dokument *MS/TP Communications Bus Technical Bulletin (LIT-12011034)* von Johnson Controls zu finden.

Alle Angaben sind Nenndaten und konform zu allgemeinen Industriestandards. Für einen Einsatz unter Bedingungen, welche außerhalb diesen Angaben liegen, wenden Sie sich an Romutec Steuer- u. Regelsysteme GmbH. Romutec GmbH ist nicht haftbar für Schäden, welche aus falscher Anwendung oder Missbrauch ihrer Produkte resultiert.

Neueste Informationen und Firmware-Updates werden auf der Website www.romutec.de veröffentlicht.

